entropy {infotheo} | R Documentation |
entropy
takes the dataset as input and computes the
entropy according
to the entropy estimator method
.
entropy(X, method="emp")
X |
data.frame denoting a random vector where columns contain variables/features and rows contain outcomes/samples. |
method |
The name of the entropy estimator. The package implements four estimators :
"emp", "mm", "shrink", "sg" (default:"emp") - see details.
These estimators require discrete data values - see discretize . |
entropy
returns the entropy of the data in nats.
Patrick E. Meyer
Meyer, P. E. (2008). Information-Theoretic Variable Selection and Network Inference from Microarray Data. PhD thesis of the Universite Libre de Bruxelles.
J. Beirlant, E. J. Dudewica, L. Gyofi, and E. van der Meulen (1997). Nonparametric entropy estimation : An overview. Journal of Statistics.
Hausser J. (2006). Improving entropy estimation and the inference of genetic regulatory networks. Master thesis of the National Institute of Applied Sciences of Lyon.
condentropy
, mutinformation
, natstobits
data(USArrests) H <- entropy(discretize(USArrests),method="shrink")